SYNTHESIS OF SUBSTITUTED 4a,10b-DIHYDRO-1H-CHROMENO-[3,4-c]-PYRIDINE-2,4,5-TRIONES *via* THE REFORMATSKY REACTION

V. V. Shchepin and D. V. Fotin

Keywords: 4a,10b-dihydro-1H-chromeno[3,4-*c*]pyridine-2,4,5-triones, Reformatsky reaction.

In a continuation of a systematic study of the reaction of zinc intermediates with derivatives of 2-oxochromen-3-carboxylic acids [1], we have observed a new and unexpected method for the heterocyclization of N-arylamides of 2-oxochromen-3-carboxylic acids **3** under the influence of the organozinc reagents **2a-c** prepared from methyl α -bromoacetate, methyl α -bromobutyrate, and methyl α -bromoisobutyrate (**1a-c**). The reactions were carried in a mixture of ether–HMTPA–THF (1:1:1), apparently *via* the intermediate compounds **4a-c** which underwent self-cyclization to the intermediates **5a-c**, which gave the required products, substituted 4a,10b-dihydro-1H-chromeno[3,4-*c*]pyridine-2,4,5-triones, **6a-c**, after hydrolysis.

1–6 Ar = 4-MeC₆H₄; **a** $R^1 = R^2 = H$; **b** $R^1 = H$, $R^2 = Et$; **c** $R^1 = R^2 = Me$

Perm State University, Perm 614000, Russia; e-mail: koh@psu.ru, shchepin@imail.ru. Translated from Khimii Geterotsiklicheskikh Soedinenii, No. 11, 1613-1614, November, 2022. Original article submitted June 30, 2022.

Compounds **6a-c** were formed as a single geometric isomer, most likely with the hydrogens on C(4a) and C(10b) in an eclipsed position.

3-*p***-Tolyl-4a,10b-1H-chromeno[3,4-***c***]pyridine-2,4,5-trione (6a). Yield 72%; mp 215-216°C. IR spectrum (nujol mull), v, cm⁻¹: 1690, 1770. ¹H NMR spectrum (60 MHz, CDCl₃), δ, ppm: 2.27 (3H, s, Me); 2.80-3.30 (2H, m, CH₂); ~3.75, 4.03 (2H, m, d, CH–CH); 6.70-7.40 (8H, m, L, C₆H₄). Found, %: C 71.55; H 3.71. C₁₉H₁₂NO₄. Calculated, %: C 71.69; H 3.80.**

1-Ethyl-3-*p*-tolyl-4a,10b-1H-chromeno[3,4-*c*]pyridine-2,4,5-trione (6b). Yield 68%; mp 181-182°C. IR spectrum (nujol mull), v, cm⁻¹: 1690, 1760. ¹H NMR spectrum (60 MHz, CDCl₃), δ , ppm: 1.00 (3H, t, CH₂CH₃); 1.40-2.10 (2H, m, CH₂CH₃); 2.26 (3H, s, C₆H₄CH₃); 2.55-2.90 (1H, m, CH); 3.60, 4.06 (2H, m, d, CH–CH); 6.70-7.40 (8H, m, C, C₆H₄). Found, %: C 72.65; H 4.58. C₂₁H₁₆NO₄. Calculated, %: C 72.82; H 4.65.

1,1-Dimethyl-3-*p*-tolyl-4a,10b-1H-chromeno[3,4-*c*]pyridine-2,4,5-trione (6c). Yield 81%; mp 231-232°C. IR spectrum (nujol mull), v, cm⁻¹: 1690, 1770. ¹H NMR spectrum (60 MHz, CDCl₃), δ , ppm: 1.10, 1.30 (6H, s, CMe₂); 2.30 (3H, s, C₆H₄<u>CH₃</u>); 3.82, 4.28 (2H, m, d, CH–CH); 6.70-7.40 (8H, m, C₆H₄). Found, %: C 72.82; H 4.65. C₂₁H₁₆NO₄. Calculated, %: C 72.71; H 4.69.

REFERENCES

1. V. V. Shchepin and D. V. Fotin. *Khim. Geterotsikl. Soedin.*, 1415 (2001).